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Abstract

A graph v issaid to be embedded ina graph T if + is isomorphic to a subgraph of T".
The embedding frequency for y in I, N(T, v), is the number of different subgraphs
of I' to which v is isomorphic. We use a computer program to calculate the
embedding frequencies of subtrees within trees. We compute N(I', v) for trees
through 10 vertices and present the results in tabular form. When trees are partially
ordered by valence class, their subtrees lie in corresponding order; we give a formal
proof of this subtrec embedding property. The structure of the embedding relation
is exhibited in a topological picture of the zeta function showing the non-zero
values of N(T, v).

1. Introduction

Graph theoretic cluster expansions of physical, chemical, and even biological
activity have received attention recently [1—7]. Cluster expansions are inspired by the
intuitive belief that properties of a composite molecule arise from contributions made
by its constituent functional groups: “the whole is equal to the sum of its parts”. One
such cluster expansion method is based on the number of times a given cluster appears
as a subgraph within the larger graph representing the molecule of interest [3,4].
This approach requires the matrix of embedding frequencies for all graphs within
each other.

Subgraph enumeration belongs to a long tradition of chemical graph theoretic
counting problems. Numbers of isomers of various empirical formulas were first to
be counted [8—10]. Cayley, for example, found a systematic method for counting
the number of isomeric saturated hydrocarbons [8]. Polya [9] showed how to count
the numbers of isomers obtainable by substitution on a more or less symmetrical
backbone (e.g. the numbers of C¢, , He, ,, isomers derived by substituting aliphatic
groups on benzene). Enumeration of all trees with up to 80 vertices along with many
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other graph theoretic and chemical graph theoretic enumerations may be found in
the book by Knop, Milller, Szymanski and Trinajstic [11].

In contrast to the enormous literature of graphical enumeration [11,12] and
chemical isomer enumeration, there is little published work on enumerating sub-
graphs. It has been remarked [5] that “counting substructures is generally a much
harder problem than counting graphs or isomers”. Algorithms have been devised to
count the total number of subtrees of a given tree [13] (regardless of repetitions).
In other cases. certain special subgraphs have been counted [14]. Kier and Hall [7]
have previously enumerated certain subgraphs. which they then apply to properties
of various compounds: unfortunately, they published only an incomplete enumeration
algorithm and a partial list of embedding frequencies. Gordon and Kennedy [15],
whose work most closely resembles ours, enumerated subgraphs of alkanes with up
to 8-carbon backbones, which they then applied to various properties; however.
their computed embedding frequencies and their algorithms were not published.
Transfer matrix methods have been used to count certain subgraphs in hexagonal
lattices [16].

Our present work is confined to all trees with up to ten vertices and nine
edges. There are 201 such trees. We report the number of times that each tree appears
as a subtree within the others. These data may prove useful for studying the mathe-
matical properties of embedded subgraphs as well as for physical applications. The
present paper is devoted to the enumeration problem and certain mathematical
properties of the embedded frequencies evident in the data. In a later paper. we make
application of these results to physical properties. Details of the computer programs
we use will be published elsewhere.

Efficient computer representations for graphs have been studied extensively.
culminating in various “codes” to specify each N-vertex ree by an N-tuple of
integers. We find these “code” or “N-tuple” representations of trees to be very
helpful for subtree enumeration. Although we opt to use Read’s walk around valency
code [17], the closely related N-tuple defined by Knop [18] is equally useful. Thus.
the list of trees and subtrees is recorded in the form of their codes or N-tuples. This
saves space and time for table look-up during enumeration. However. our initial
naive hope that codes would simplify the computation of repetition frequencies was
frustrated. We were able to perform the enumerations only by means of computer
programs employing the adjacency matrices as intermediates. Subtree embedding
frequencies are a far from trivial enumeration problem.

In the course of enumerating subtrees. we have observed certain previously
unrecognized regularities. Such regularities imply new interpretations which may
help our understanding of chemical structure as well as the purely mathematical
structure of the graph embedding relation. In addition to the tabulated values of
embedding frequencies. we find a topological map of these frequencies to be a power-
ful tool for searching out new structural relations and concepts; we publish it here
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in the expectation that others will also find it useful. The map led us to order trees
according to their valence classes, a mathematical expression of the intuitive “branching”
concept. In this order, the embedding frequency map shows a more regular structure
than other orderings we have tried. We have translated the most conspicuous structure
of the map into a theorem relating the order of valence classes of subgraphs to the
order of the graphs in which they are embedded.

2. Definitions

Let I' = (V, £') denote a graph whose vertex set is ¥ and whose edge set is E.
Of course. I" can be drawn as a collection of vertex points connected by edge lines.

The vertices are conveniently numbered: V' ={i,fori=1.2,3,... ,n}. The number
of vertices, n = || or n = [T'], is called the order of the graph. The edges consist of
non-ordered pairs of vertices: £ = {(i,)....,}.

Most of our results apply to graphs without cycles. Such graphs are called trees.
Some of our discussion applies to graphs in general and not just to trees. Statements
about “graphs” should be interpreted as applying in general, while those about trees
may only apply to graphs without cycles.

A subgraph of the graph I" is any graph vy whose vertex and edge sets are
contained in those of I': V' (y) C V(I") and E(y) C E(I"). The null graph ¢ and the
graph I' are “improper” subgraphs of I'. We are concerned only with connected
graphs and connected subgraphs. A graph is said to be connected if there is at least
one path between every pair of vertices. A path from i to j is a sequence of edges
(i, k).(k, D), ...,(0m, n),(n,j) commencing with / and terminating with j. The
length of such a path is the number of edges it contains. The length of the shortest
path from 7 to j is the distance from i to j. The diameter of a graph is the largest
distance existing in that graph.

One mathematical representation of a graph is its adjacency matrix, familiar
to chemists from Hiickel MO theory. One disadvantage of this representation for
computers is the large space requirements: the number of elements in the adjacency
matrix increases as the square of the order of the graph. The adjacency matrix has
many uses. For example, {A”]i]- is the number of length #n paths between vertices ¢
and /. Also useful is the distance matrix: [D],; is the length of the shortest path
between vertices 7 and j.

The adjacency matrix of a graph is not unique. There are many ways to number
the vertices and hence to order the rows and columns of the adjacency matrix. Two
graphs which differ only in the numbering of their vertices are isomorphic. Two
graphs T and I are said to be isomorphic if there is a one-to-one mapping between
their vertex sets I and V' which preserves the edges; that is, if (i, /) is an edge of T,
then the image (i, j') is an edge of T"".

Each vertex 7 in I' has a unique valence: the number of edges terminating at 7,
denoted by v;. For applications to chemistry, the valence of any vertex is usually
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limited, e.g. 4-valent carbon atoms: for our work. we make no restriction on valence.
A leaf is any one-valent vertex: such vertices form the exterior of a tree. The process
of removing a leaf and its edge is called pruning.

3. Valence classes

We find it useful to classify graphs by an equivalence relation which associates
them in classes we call valence classes. The same equivalence has also been used by
Randi¢ [19] and Ruch [20] to characterize or quantify graphical “branching”. The
collection of valences for all vertices of ' is the valence class of T and is denoted
o(l") =y, all i € I'}. As the name suggests. the valence class quantifies the amount
and type of branching in the graph (although not the relative order of branches).
The order of terms in the valence class is unimportant. Common practice is to arrange
the valences in non-descending order. e.g. {1,1.1.1.2.2.4) is the valence class for
the graphs

We write the valence class by exhibiting the valences:

a={1.1,... 1 (a, times). 2.2.....2(a, times).etc.},

Clearly . the equivalence class is a partition [21] of twice the number of edges:
2. o = 21El.

and o, 0 =1.2.... isa partition of the number of vertices:
2. o = |V

For trees. the number of edges is one less than the number of vertices: hence, the
valence class of a tree satisfies:

2+2.(i-2)¢e;=0.

(Note that 2-valent vertices do not contribute in this relation.) For trees with n
vertices. the valence class {1%,2("~2)} belongs to the linear chain of vertices. The
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valence class {11 (1 — 1)} belongs to the “star” with n — 1 branches. Other
valence classes often contain two or more non-isomorphic graphs.

4. Lexicographical ordering of valence classes

Graphs can be classified and partially ordered by their valence classes. Randic
and Ruch adopt Muirhead’s partial sums method [22] for ordering valence classes.
We have chosen lexicographical ordering because (i) it is a well ordered relation on
the valence classes, and (ii) it accounts for important features of the embedding
relation.

In lexicographical order, two valence classes are compared term by term until
a difference is found. There are two choices: The comparison may begin with the
small valences and ascend to the larger ones (a choice we call “outside-to-inside”
because the leaves are compared first, and the highest valence vertices last). Or the
comparison may begin with the large valences and descend to the smaller ones
( “inside-to-outside” ). We adopt the outside-to-inside ordering defined as follows; let

a={1% 2% .}
g =1{17 2% .}

Then, a < B (we say « precedes B) if and only if there exists an integer & such that
o; = B; for all i < k, and o > B, (regardless of the sizes of o and §; for & <1).
For example, in the outside-to-inside lexicographical ordering: {1¢.3,5} < {1°,4%}
< {15,22,5} < {1°.2.3.4} etc. In the inside-to-outside ordering. the same valence
classes lie in the order: {15.2,3,4} < {1°,42} < {15,225} < {1%,3,5}. The two
valence classes {1°,2%.5} and {1°,4?} are not comparable by the partial sums ordering
rule [22]. In our ordering, the stars constitute the smallest valence class and the
chains the largest valence class among trees with the same numbler of vertices.

The lexicographical order of valence classes induces a partial ordering of
graphs. If T and T have the same valence class, we call them valence class equivalent.
The number of non-isomorphic graphs in the valence class « is denoted by n(a).
These numbers are easily read from our tabulated results.

As will become evident below, outside-to-inside lexicographical ordering
imparts a strong diagonal structure to the subtree embedding relation. We make
this structure precise in the theorem proved below: roughly speaking, we show that
lexicographical ordering is preserved upon pruning leaves from a tree.

5. Embedded valence classes

We say that the valence class « is embedded in the valence class § if there
exists a pair of graphs I'; and I, having these valence classes and such that I’} C T',.
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For example, if a single leaf be pruned from all graphs in a valence class a in all possible
ways, the resulting graphs span several valence classes of one lower degree. For chains,
there is only a single valence class in the once pruned subgraphs:

12 2)1-2 - 12 2)’1-3'
Likewise, for stars:
1" Y n=1)->1""%(n-2).

These are algebraic expressions for the invariance of the chains or the stars under
pruning. Conversely, trees can grow by budding a new leaf on any vertex. The collection
of all trees produced when a single bud sprouts from all vertices of a valence class 8
in all possible ways spans those valence classes & which yield 8 by pruning.

When valence classes are lexicographically ordered, the collection of embedded
valence classes for once pruned trees of the valence class « contains a least and a
greatest member. Let us write the valence class of a general tree:

o= {1% % .},

where 7 is the smallest non-leaf valence class appearing. Then the valence classes of
the collection of once pruned subgraphs are written

-1 -
a1 Y N N N

It is then clear that the least, the greatest, and a general intermediate pruned valence
class can be written:

=1 e a b Loy
a = {1&‘ LG-1)y it lza"}
T +
ay - —{1% 1 10‘1, (]—»])a!‘l 1ojej-1 nan}
+ 1
a>“{la’ b Y (n=1) -t oyon }

We use i for the smallest valence (greater than 1) appearing in a.

6. The enumeration problem

Suppose I' is an n-vertex graph and <y is an m-vertex graph. Then the
embedding frequency N(T',v) for vy in I' is defined to be the number of different
subgraphs of I' isomorphic to . Two subgraphs are “different” if their vertex sets
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are not the same. When I and vy are regarded as row and column labels, respectively,
then the array of N(I', ) is called the embedding frequency matrix. Various classes
of graphs are closed under the subgraph embedding relation and correspond to sub-
matrices of V. For example, we limit our discussion to one such class, the trees.

The subgraph enumeration problem is to count the number of times v is
embedded in [". A partial solution, in the form of a table of values N(T, y) through
the 201 trees with 10 or fewer vertices, in given in table 2. Tables for larger trees
quickly become too large for a journal article (there are 987 trees with 12 or fewer
vertices). Therefore, other forms of the solution, such as recursion formulas or
generating functions, are more practical as well as more satisfying. Such solutions
remain an outstanding unsolved problem.

It is clear that graphs can be partially ordered by the number of vertices.

That is. the rows and columns of V are taken in the order: |T'} =1.2.3,... . This
results in a lower triangular embedding frequency matrix with N(I', ') = 1 on the
diagonal.

Additional approximate triangular structure is induced by ordering the trees
according to valence class. That is, within a given [T’ = n. we order the graphs by
lexicographical order of their valence class. If two graphs have the same valence
class, they may be further ordered by the valence classes of their once pruned sub-
graphs (defined below).

7. Computer program

Computer programs for generating and manipulating graphs have been
reported [17,18,23]. Our own computer program to enumerate the subgraphs exploits
published algorithms as well as some original features. First, a standard list of all
graphs (trees) with 10 or fewer vertices is given. The form of this list is described
below. Second, an n-vertex graph I is selected; a leaf is removed from I' to produce
an (n — 1)-vertex graph <. Third, a search is made through the standard list until
v is found. Lastly, the counter for N(I',v) is increased by 1. The pruning process
is repeated, removing all possible leaves, all possible pairs of vertices, all possible
triples, etc. until all connected subgraphs have been generated and counted. The
program contains a bootstrap feature: If the given standard list is incomplete, so that
v is not found in step three, then « is inserted into the list. This feature was used to
help to construct the complete standard list of codes for trees.

8. Read’s walk around valence codes

Read has described criteria for selecting codes to represent trees [17,23]. We
have selected Read’s walk around valence code ([17], p. 179), a string of # integers,
one for each vertex. In this way, each tree has a unique code, occupying very little
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* Table 1

Standard list of trees with no more than ten vertices. The first column lists the sequence number of
the tree. The second entry in each row is the number of vertices in that graph. The following entries

are the Read walk around valence code for the tree as explained in the text
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Table 1 (continued)

[en e Rom i e el v e i e e I e B e B un B e B e B B e B o Bl e o Bl e Bl wo B e e [ e oo Bl s [l e Bl o e B co ll e M e B o s o 2w [ s B e s B o B o Y e B e B o I o B o Y e B o s
COOO R mm —mw OO0 —TO0~ OO O m OO~ QmrkQOrm O el OO O ODODOOOOOO 00000
CANMNOOO— OO ONDNODOOOOONOOOODONOMNOCOOOONOOOCODONODODOOOO0O
OO0 Om OOMNOOCOOOOMNMMNONO N0~ NMNMOOOMNMOOO0OO OO0
OO T OO0 O0OO0OO0OOCOLLOOOOO0OCOCOCONTO = mO~OO0OOOOOTTOTOO OO
NN Qed F o rd ed N OO OO I NOO AN OO0 OO0 OO0OLOO~O0OONOOOmmOININOOOOOOOO
CO—OOODOOMNCNIMNONOOODNOOOCOOO OO ~TOOOOOMNODOOO-MOOOVOOODoOO
— et Dt = DDt OO OO OODOm OMNOOO—~TOOTOODOONOLOMNMOONODOOO—HODOODDODODOOQ

ik et ymd ok ok LD I ON I IO N Ot e NN O A A i O NN e NN OO OO0 N OO~ OFT NN O

COQOCOOLCOOLOLOOLLLCOLLLOOLOLOLDOOOLOLDOOOOCOOOODODOOOOOODO0O
et e (O vd et (D) vk et vl gt LDt (D et v (D v D et et ek vl e pd et (D (D) o v ol e D OO OO A OO otk ol O ot D — O
—_rA it A O IO et DO~ O N OO D emtod vk = DN O OOOANNNNCIOONOOODOONOOOOO
OO m O~ A NN O Qi (I D O~ = NN O i OO OO A m OO ONNOD OO OMNMODOOCNO O~ NOMNOM
- DO N O OO IO O~ OO0 OO0~ OONMNODOODODNMNNO O rd N N O~ OCOMN O
T O OO i (IO D v A At Dl i (NNt N O QS A OO O NO it OO OMNMOOOO O OO0~
O i DN D et i oA rdk (N ok o ol D et OO QOO OMN O OOONOODONOO At OO O mdrd vl O et od O e — O
et Nl e (] O OO OO A OO O NNt A A e O A A rd It At S Ot NN A OO rd e QO OO NO O

N ot vt e et OO N IO D vt A S N A o el et O] e e et N O N Qe NNOONONN NN OONMNO O -t

NN CNIN NN N O NN NN NN MO ONONNN NN MOt NN
SOOI OO
B B B R e R e B I I B R e I B I I e B B A I e A I I B B e B B I B e B T T B B B B e B e B e e B B B e B B e B
I OISO O A NN TN OO NMGF OO ROO =N T NO-0ONO NG N0~ 0O
OO0 OCOOOD A r g mird rd e e IO I NI IO NN NN <t b <t <t v
e B A I e I R e e R T B B e B e B e B B B B B e I B B e B e B B B B T e B e B e B e B e B e B e B B B e B |




20 R.D. Poshusta and M.C. McHughes, Embedding frequencies of trees

tJ

storage space, which becomes its name in a list used for table look-up. The greatest
shortcomings of these codes is that they apply only to trees and not to graphs with
cycles. Table 1 lists the Read codes for the 201 trees with up to 10 vertices in the
order of their valence classes as previously described.

Read codes are also partitions: the sum of integers in the code is one less than
the number of vertices. However, the order of integers in the code is important.
Nevertheless, it is sometimes convenient to use the same power notation for codes
that we have used for valence classes.

Read describes how to decode the walk around valency codes. For example,
consider the following code: 3010200. The first vertex, with valence 3. has three
branches. The first branch, starting with the second vertex has no (0) further branches.
The second branch, starting with the third vertex, has one (1) further branch on which
lies the fourth vertex, which in turn has no (0) further branches. The third branch
from vertex 1, starting with vertex 5, has two (2) further branches. each terminating
in a leaf (0,0):

3010200 -~ 0. ..

In this way. each code of table 1 can be decoded into its graph.

9. Results

The results of our subtree enumerations are presented in table 2 and depicted
graphically in fig. 1. Trees are ordered in these presentations according to table 1, with
larger valence classes above smaller ones. The corresponding rows and columns of
table 2 and fig. 1 provide the embedding frequencies of these trees. Zeros become
more and more prevalent with larger trees. Ratios of numbers of zero entries to total
number of zero and non-zero entries in all rows with [I'| =4,5,...,10 are 1/9,
5/21, 26/69, 114/220, 551/851, 2550/3384, and 13181/15741. respectively. To
conserve space in table 2, we take advantage of the sparsity of the frequency matrix
(81% of the 20301 entries in table 2 are zero). For example, the 25th row is 7, 6,15,
0,20,0,0,15,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,1. We abbreviate this by
indicating the length of a string of repeated zeros in parenthesis; thus, row 25 is
written: 7,6,5,0,20,(2),15,(5),6,(10), 1. This makes the matrix more difficult
to read, but reduces the longest row from 201 columns to only 42 columns. For
example, the 10th tree
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Fig. 1. Zeta function for trees: §(TI,v) = 1 if v C T'. Depiction of the non-zcro
embedding frequencies for trees having no more than ten vertices. The entry in the
I row and + column is blank if -y is not embedded in I" and containsa dot otherwise.
Trees are ordered as indicated in table 1. The inset shows, in a larger scale, the
block of 8-vertex trees embedded in 9-vertex trees; also shown are the valence
classes of these treesand their once pruned subtrees to illustrate the ordering theorem.
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The data provided here are useful for many purposes. In a later paper. we
illustrate several physico-chemical applications. These data have suggested to us
certain mathematical properties of the subtree embedding relation. The ordering
theorem proved below accounts for the approximate block diagonal structure of fig. 1.
Additional properties may be suggested to other readers.

Certain values in the embedding frequency matrix are elementary. For example.
the first two columns N(T". , Jand N(I'., . )are merely the numbers of vertices and
numbers of edges in I". Other values are almost as simple. e.g. embedding frequencies
of chains can be counted in the distance matrix (e.g. N(I'., . . ) is the number of
2% in the distance matrix of I'). Embedding frequencies of branched subtrees are not
so simple; it is their entries in table 2 that carry the most interest.

A subset of graphs is closed under the embedding relation if all their subgraphs
are also contained in the subset. A common example is the set of 4-graphs which
contains all graphs having 1.2.3, or 4-valent vertices. Also, stars and chains are each
closed under the embedding relationship. All subgraphs of stars are other stars and
those of chains are other chains. (The trees, , and . . , are at once stars as well
as chains.)

Let S,, denote a szar consisting of a central vertex with valence n = 1 joined to
n =1 leaves. The Read code of S, is (n—1)0" " Subtrees are formed by
successively pruning leaves to produce S,, with code (m — 1) 0™ =1 1t s easy to
see that the embedding frequencies of stars are given by binomial coefficients

n—1
N(Sn' ‘m) = .
m—1

except for the first column: N(S,. $,)=n.

Let G, denote the chain of 1 vertices with no side branches. The Read code of
G, is2 1012302 0 1 1=312 0 if 445 odd:itis 2 17722 0 10192 0/if jy is even. The
only subtrees of a chain are smaller chains and the embedding frequency of the mi-chain
within the n-chain is

N(C

e Gn) = n—mt1.

10.  Pruned trees

Blocks representing single and multiple prunings are conspicuous in the
embedding frequencies depicted in fig. 1. The once-pruned blocks, consisting of
all rows with n vertices and all columns with n — 1 vertices are achieved when one
leaf is removed in every possible way fromall n-vertex trees. Twice-pruned blocks result
from removing a second leaf. and so forth. Of course, the non-pruned block is com-
pletely diagonal. showing only the elements N(I",T") = 1. Blocks become more dense
as leaves are pruned away from the starting graphs.
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Each once-pruned block shows a concentration of subtrees near its diagonal.
This trend toward the diagonal is enhanced by ordering according to valence class and
may be expressed in the form: subtrees can be less "branched” but cannot be more
"branched” than the tree out of which they are pruned. In mathematical terms, the
diagonal structure of once-pruned subtrees is required by the ordering theorem. The
trend for the diagonal is “remembered” in twice-pruned subtrees. but these blocks
are even more dense since pruning leaves also reduces the number of valence classes.

Similarity among once-pruned blocks is noteworthy. The embedding fre-
quencies of once-pruned subgraphs of n-vertex trees have a similar structure to the
embedding frequencies of once-pruned subgraphs of (n — 1)-vertex trees. That is,
the n-vertex embeddings “inherit” structure from the embeddings within their sub-
trees. This property, evident by visual examination of fig. 1, holds promise that
embedding frequencies of large graphs can be computed with the aid of embedding
frequencies of their subgraphs. We have not found a way to simplify subtree enumer-
ation for n-vertex trees by using their inheritance from (n — 1)-vertex subtrees.

11.  Ordering theorem for embedding frequencies

The structure of the subtree embedding frequency matrix is further explained
by the following theorem. The theorem concerns pruning leaves from all graphs in a
valence class. For this we need to know there exist graphs in the valence class having
at least one leaf on any higher valent vertex. To see this. consider a graph I'; in valence
class

A given vertex, with valence v > 1 may, or may not, be joined by an edge to a leaf.
We will show that '} is a valence class equivalent to another graph T, in which the
given vertex is joined to a leaf. For this, consider the diagram:

L2 LB
B O

The vertices are labeled by their valences in both graphs ', and I, . In "} there
is no leaf joined to v; then choose any vertex v’ joined to v — this will become a leaf
of I',. Now sever all edges joining v’ to other vertices except (v,v'). Re-join the
severed edges to any leaf of the graph, say the one joined to v". The result will be I,
which has precisely the same valences as I'; but has aleaf joined to v. This construction
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shows that in the valence class o there exists at least one graph with a leaf joined to
any of the higher valent vertices that may be present.

For the theorem, consider two valence classes, a and B, and the trees {T;,
ranging over all n(a) non-isomorphic trees with valence class a}and {T,. ranging
over n(f) trees with valence class 8}, ITy|=IT,l. The once-pruned subtrees are
{I", = 1} and {T, — 1}, respectively. Of course, the trees of {I", — 1} and {T}, = 1} may
be ordered by their valence classes also. The theorem concerns these orders.

THEOREM

If a < B, then the greatest valence class of {I', — 1} does not exceed the
greatest valence class of {I, — 1} and the least valence class of {I', — 1} does not
exceed the least valence class of {T", — 1}.

Proof

Write

a = {1% 5% . j%,
and

B = {15 kPe P )

By hypothesis o < §; let j be the smallest valence at which the partitions « and 8
differ: o> B A leaf can be removed from vertices of each valence and the valence
classes of trees pruned from TI'; can be listed in lexicographical order:

-1 . 1 .-
Q ={1°“ L(i=1) i 1,...,/7“”}

<
— a =1 .oy -, WOF ey P o -1 a
a><—{l‘ T (T g ,...,n”}
- a -1 .oy N Wy o~ 1 T 1 Oy — 1
a>—{1‘ B AU A AU £ B MO R /el }

Here we use i for the smallest valence in I'; after leaves (a, =0 for I < <) and
1 <j<n, with n being the largest valence. Similarly, the valence classes of once-
pruned subtrees of T, are:

b = {18 -1 B )
- {]_ﬁl"l‘kﬁk".'g(l_1‘)61—1+1,lﬁl"1,_."’nﬁnz}

ﬁ><

B, = {lﬁl_l,kﬁ",...,15’,.,.,(771—I)Bm’lﬂ,mﬁm'l}
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First, consider the greatest valence class of once-pruned subtrees. Compare
a, with B_ . Then a precedes for the same reason that « precedes .

Next, consider the smallest valence classes; compare o, with .. If i <k,
then we have a. < f..1f i =k and §; = a;, then a. precedes f. because oy > f;
for some s larger than & as in aand f. Finally, if / = k and «; > §;, then a precedes
B because a; — 1 > f; — 1.

12. Discussion of results

The subgraph enumeration problem, a fundamental problem of mathematical
graph theory, is extremely difficult although numerical answers can be found easily
for restricted examples such as we have done for trees through 10 vertices. As is often
the case, these examples, when viewed en masse, reveal new structures in the
embedding relation and may assist in the search for general solutions.

Mere embedding data without enumeration, known as the Zeta function or
the Riemann function [24] and depicted in fig. 1, reveals several structural details
of the subtree relation. Embedding matrices (the zeta function or the embedding
frequency matrix) are partitioned into blocks of once-, twice-, etc. pruned trees;
the blocks repeat similar forms on different scales and different densities. A refine-
ment of the block structure is seen when trees are ordered by their valence classes;
this refinement, in turn, is amplified upon enlarging the graphs. The valence class
structure of the embedding relation is a manifestation of the partially ordered valence
classes, as demonstrated in our ordering theorem.

Our method for enumerating subtrees works by explicitly constructing all
subtrees of I' rather than by considering all smaller trees, many of which are not
contained in I". Thus, we never compute N(I,v) = 0; zeros only arise by default
when v is not present as a subtree of I'. However, our method does not utilize informa-
tion previously acquired about the subtrees of smaller graphs. We have searched
without success for a practical recursive method which would build upon previously
computed frequencies.

Some embedding frequencies are completely understood: for example, the
stars and the chains. Others exhibit ordering relationships which are evident in the
N-matrix and which are partly explained by the ordering theorem. A complete under-
standing of subtree embedding frequencies would be approached by a recursion
formula or a generating function, neither of which seems very simple to find.

13. Conclusions

We have computed the subtree embedding frequency matrix through trees
with degree II'| = 10. By ordering the trees according to their valence class, the
matrix reveals similar blocks which tend to concentrate entries near the diagonal.
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We have established an ordering theorem which helps to explain this structure. We
report the complete computer-generated embedding frequency table for trees through
10 vertices for the possible benefit of others. who may search for additional relation-
ships of graph embedding. Our results also include the numbers of non-isomorphic
trees in a given valence class. In a later paper, we will exhibit some applications of the
embedding frequencies to cluster expansions of physical properties.

Embeddings of graphs with cycles can be studied by similar computer methods.
Valence classes and partial ordering of embedded valence classes are useful tools for
such graphs also. However, repeated pruning of leaves is not the only way to generate
subgraphs of graphs with cycles. Therefore, the valence class ordering theorem is less
useful than for trees. The form of the Zeta function is also greatly changed, e.g. the
unpruned blocks may no longer be diagonal unless the embedding relation is restricted
to.say, convex subgraphs.

The most obvious directions for future work are to extend the embedding
frequencies to graphs with cycles. to labeled graphs, and to rooted trees.

Acknowledgements

We are grateful to Professor D.J. Klein for his continued interest in this project.
We also had helpful discussions with Mr. Ken Davis. Thanks also go to the Academic
Computing Service of Washington State University for generously supporting our
computations.

References

1] Chemical Applications of Topology and Graph Theory, ed. R.B. King (Elsevier, 1983).

{2] K. Balasubramanian, Chem. Rev. 85(1985)599.

31 J.W. Essam, J.W. Kennedy, M. Gordon and P. Whittle, J. Chem. Soc. FFaraday I, 73(1977)

1289.

[4] D..Klein, Int. J. Quant. Chem. S20(1986)153.

[5]  N. Trinajsti¢, D.J. Klein and M. Randi¢, Int. J. Quant. Chem. $S20(1986)699.

[6] D.H. Rouvray, Chem. Soc. Rev. 3(1972)355;
D.H. Rouvray, Endeavour 34(1975)28.

[71  L.B.Kier and L.H. Hall, Molecular Connectivity in Chemistry and Drug Research (Academic
Press, 1976).

[8] A.Cayley, Amer, J. Math. 4(1881)266;
A. Cayley, Rep. Brit. Assoc. Adv. Sci. 45(1875)257.

[9] G. Pdlya, Comptes Rendus Hebdomadaires des Seances de I’Academie des Sciences (Paris)
201(1935)1167.

[10] H.R. Henze and C.M. Blair, J. Amer. Chem. Soc. 56(1934)157.

11] J.V. Knop, W.R. Miller, K. Szymanski and N. Trinajstié¢, Computer Generation of Certain
Classes of Molecules, Association of Chemists and Technologists of Croatia, Sveucilisna
naklada Libir, 41000 Zagrab, Yugoslavia (1985).

[12] Graphical Enumeration, ed. F. Harary and E.M. Palmer (Academic Press, 1973).



[13)
(14]
[15]
[16]
(17]
(18]

(19]
(20]
(21]

(22]
(23]
[24]

S
st
wn

R.D. Poshusta and M.C. McHughes, Embedding frequencies of trees

F. Ruskey, SIAM J. Comput. 10(1981)151.

N. Alon, Israel J. Math. 53(1986)97.

M. Gordon and J.W. Kennedy, J. Chem. Soc. I"araday 11, 69(1973)484.

D.J. Klein, G.I.. Hite and T.G. Schmalz, J, Compt. Chem. 7(1986)443.

Graph Theory and Computing, ed. R.C. Read (Academic Press, 1972).

J.V. Knop, W.R. Muller, Z. Jericevi¢ and N. Trinajsti¢, J. Chem. Inf. Comput. Sci. 21
(1981)91.

I. Gutman and M. Randi¢, Chem. Phys. Lett. 47(1977)15.

E. Ruch, Theor. Chim. Acta 38(1975)167.

W. Lederman, Infroduction to the Theory of Finite Groups (Oliver and Boyd, 1957)
p.71.12.

R.I". Muirhead, Proc. Edinburgh Math. Soc. 19(1901)36; 21(1903)144; 24(1906)45.

R.C. Read, J. Chem. Inf. Comput. Sci. 23(1983)135.

J.W. Kennedy and M. Gordon, Ann. New York Acad. Sci. 319(1979)331.



